首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9884篇
  免费   1714篇
  国内免费   1287篇
化学   6189篇
晶体学   220篇
力学   523篇
综合类   83篇
数学   502篇
物理学   5368篇
  2024年   14篇
  2023年   87篇
  2022年   178篇
  2021年   248篇
  2020年   320篇
  2019年   313篇
  2018年   311篇
  2017年   316篇
  2016年   423篇
  2015年   374篇
  2014年   415篇
  2013年   1240篇
  2012年   572篇
  2011年   656篇
  2010年   508篇
  2009年   649篇
  2008年   620篇
  2007年   582篇
  2006年   605篇
  2005年   546篇
  2004年   492篇
  2003年   485篇
  2002年   414篇
  2001年   299篇
  2000年   309篇
  1999年   236篇
  1998年   174篇
  1997年   154篇
  1996年   163篇
  1995年   141篇
  1994年   170篇
  1993年   130篇
  1992年   113篇
  1991年   101篇
  1990年   74篇
  1989年   67篇
  1988年   54篇
  1987年   36篇
  1986年   48篇
  1985年   43篇
  1984年   47篇
  1983年   10篇
  1982年   24篇
  1981年   22篇
  1980年   14篇
  1979年   14篇
  1978年   10篇
  1977年   9篇
  1976年   7篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
《Arabian Journal of Chemistry》2020,13(11):8424-8457
Nowadays, increasing extortions regarding environmental problems and energy scarcity have stuck the development and endurance of human society. The issue of inorganic and organic pollutants that exist in water from agricultural, domestic, and industrial activities has directed the development of advanced technologies to address the challenges of water scarcity efficiently. To solve this major issue, various scientists and researchers are looking for novel and effective technologies that can efficiently remove pollutants from wastewater. Nanoscale metal oxide materials have been proposed due to their distinctive size, physical and chemical properties along with promising applications. Cupric Oxide (CuO) is one of the most commonly used benchmark photocatalysts in photodegradation owing to the fact that they are cost-effective, non-toxic, and more efficient in absorption across a significant fraction of solar spectrum. In this review, we have summarized synthetic strategies of CuO fabrication, modification methods with applications for water treatment purposes. Moreover, an elaborative discussion on feasible strategies includes; binary and ternary heterojunction formation, Z-scheme based photocatalytic system, incorporation of rare earth/transition metal ions as dopants, and carbonaceous materials serving as a support system. The mechanistic insight inferring photo-induced charge separation and transfer, the functional reactive radical species involved in a photocatalytic reaction, have been successfully featured and examined. Finally, a conclusive remark regarding current studies and unresolved challenges related to CuO are put forth for future perspectives.  相似文献   
32.
Achieving highly efficient phosphorescence in purely organic luminophors at room temperature remains a major challenge due to slow intersystem crossing (ISC) rates in combination with effective non‐radiative processes in those systems. Most room temperature phosphorescent (RTP) organic materials have O‐ or N‐lone pairs leading to low lying (n, π*) and (π, π*) excited states which accelerate kisc through El‐Sayed's rule. Herein, we report the first persistent RTP with lifetimes up to 0.5 s from simple triarylboranes which have no lone pairs. RTP is only observed in the crystalline state and in highly doped PMMA films which are indicative of aggregation induced emission (AIE). Detailed crystal structure analysis suggested that intermolecular interactions are important for efficient RTP. Furthermore, photophysical studies of the isolated molecules in a frozen glass, in combination with DFT/MRCI calculations, show that (σ, B p)→(π, B p) transitions accelerate the ISC process. This work provides a new approach for the design of RTP materials without (n, π*) transitions.  相似文献   
33.
34.
The emerging metal single‐atom catalyst has aroused extensive attention in multiple fields, such as clean energy, environmental protection, and biomedicine. Unfortunately, though it has been shown to be highly active, the origins of the activity of the single‐atom sites remain unrevealed to date owing to the lack of deep insight on electronic level. Now, partially oxidized Ni single‐atom sites were constructed in polymeric carbon nitride (CN), which elevates the photocatalytic performance by over 30‐fold. The 3d orbital of the partially oxidized Ni single‐atom sites is filled with unpaired d‐electrons, which are ready to be excited under irradiation. Such an electron configuration results in elevated light response, conductivity, charge separation, and mobility of the photocatalyst concurrently, thus largely augmenting the photocatalytic performance.  相似文献   
35.
本文从理论上研究了在双色频率梳激光场驱动下多光子谐波辐射光谱中的相位突变现象。我们利用Floquet理论非微扰地模拟了频率梳激光场与原子分子等量子系统的相互作用过程。谐波辐射信号是多光子偶极跃迁相干叠加的结果,通过调节频率梳激光场间的相对相位,可以相干地控制谐波辐射信号的强度。通过对谐波信号进行傅里叶变换,可以提取不同跃迁路径的相对相位信息。我们通过改变频率梳组激光场的强度和频率组分实现多光子跃迁频率,让其跨越共振跃迁频率时,谐波相位会发生突变。从而可以观测超强激光场驱动下量子系统共振跃迁频率的斯塔克能移。  相似文献   
36.
Density functional theory (DFT) of freezing has been used to investigate the freezing transitions in a system of colloidal particles confined to a two-dimensional plane. The particles interact via a model Hertzian type potential of varying softness. The pair-correlation functions (PCFs) needed as input structural information in DFT are calculated by solving hypernetted chain (HNC) integral equation theory. The PCFs thus obtained have been compared with those obtained through experiment and simulations and are found to be in good qualitative agreement. We found that the PCFs are sensitive to the softness of the potential: showing splitting of pair-correlation peak in the harder case and anomalous non-monotonic density dependence in the softer case. Using the common tangent construction method, we have also proposed the fluid-triangular solid phase diagrams in the temperature-density plane. We found that the phase diagram exhibit solid-fluid coexistence region whose thickness decreases with the increasing temperature as well as with increasing softness of the potential. In the temperature and density range of our calculation, DFT fails to produce any reentrance in the phase diagram.  相似文献   
37.
ABSTRACT

The theory of calculus of variations is a mathematical tool which is widely used in different scientific areas in particular in physics and chemistry. This theory is strongly related with optimisation. In fact the former seeks to optimise an integral related with some physical magnitude over some space to an extremum by varying a function of the coordinates. On the other hand, reaction paths and potential energy surfaces, in particular their stationary points, are the basis of many chemical theories, in particular reactions rate theories. We present a review where it is gathered together the variational nature of many types of reaction paths: steepest descent, Newton trajectories, artificial force induced reaction (AFIR) paths, gradient extremals, and gentlest ascent dynamics (GAD) curves. The variational basis permits to select the best optimisation technique in order to locate important theoretical objects on a potential energy surface.  相似文献   
38.
39.
《Current Applied Physics》2020,20(6):794-801
Orthorhombic La0.7-xEuxCa0.3MnO3 samples (x = 0.04–0.12) with apparent density of ρ = 3.9–4.1 g/cm3 prepared by solid-state reactions have been studied. The analysis of temperature-dependent magnetization for an applied field H = 500 Oe indicated a decrease of the Curie temperature (TC) from about 225 K for x = 0.04 through 189 K for x = 0.08–146 K for x = 0.12. The magnetocaloric (MC) study upon analyzing M(H, T) data has revealed that the magnetic entropy change around TC reaches the maximum (|ΔSmax|), which is dependent on both x and H. For an applied field interval of ΔH = 60 kOe, |ΔSmax| values are about 5.88, 4.93, and 4.71 J/kg⋅K for x = 0.04, 0.08, and 0.12, respectively. Though |ΔSmax| decreases with increasing x, relative cooling power (RCP) increases remarkably from 383 J/kg for x = 0.04 to about 428 J/kg for x = 0.08 and 0.12. This is related to the widening of the ferromagnetic-paramagnetic transition region when x increases. Particularly, if combining two compounds with x = 0.04 and 0.08 (or 0.12) as refrigerant blocks for MC applications, a cooling device can work in a large temperature range of 145–270 K, corresponding to RCP ≈ 640 J/kg for H = 60 kOe. M(H) analyses around TC have proved x = 0.04 exhibiting the mixture of first- and second-order phase transitions while x = 0.08 and 0.12 exhibit a second-order nature. The obtained results show potential applications of Eu-doped La0.7Ca0.3MnO3 materials for magnetic refrigeration below room temperature.  相似文献   
40.
《Current Applied Physics》2020,20(1):102-105
We demonstrate a practical way to identify the presence of a perovskite phase in rare-earth nickelates (RNiO3) using X-ray photoelectron spectroscopy (XPS). By varying the calcination temperature, we prepared RNiO3 powders with different degrees of chemical reaction. We found that perovskite RNiO3 becomes predominant after high-temperature calcination (≥1,000 °C) in X-ray diffraction and XPS (at Ni 3p and O 1s edges) measurements. While the observed spectra at the Ni 3p edge are similar for all powders, a sizable difference was observed in the O 1s-edge spectra depending on the calcination temperature. With the formation of a perovskite phase with a trivalent Ni3+ state, an XPS peak corresponding to oxygen ions in the perovskite lattice distinctly emerges. Our work shows that the Ni3+ state cannot be determined by analyzing the Ni 3p edge solely and rather, the O 1s edge should be simultaneously monitored for explicit identification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号